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Activation functions should commute with the representation of
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Compatible activation function: norm-based activation functions
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Abstract

Transtariag or rotaxiag an inpar image shonld nor affzct the
resedss of maanty conipueer v iusts. Comvohanore! newiad aei-
werks (CNNs, are aiready 'rans'ation equavartant. inpot image
trenskations produce proportionats feature map translalions.
This is not the case for rtations. Global rotation squévariance
s Woicaily sought through data cugmentation, but paich wire
eqnvariarce is more difficalt. We prasemt Hormoaie Newarks
or H-New, a CNN edchibiing equavariarce ‘o patch-wize frans-
lation and 360.rotaiion. We achivve this by eplocing regular
CNN flwrs wuh arcular harmonics, rwekering a maximal
rerpaare ond ovierfatum for every veceptive field natoh

HNets use 2 rich, parameter-efficient and fjixed computa-
fiomal complerity representafion, ond we show thay desp jeature
maps wilhin tie Retwork encode complicated rotational irvan-
ants. Ve demorstraie that owr lavers arz general enough o be
used g counction wuh e latest erchilectures ard techaigues.
such as deev superzizion and barch nonmaiizarion. We also
actueve stare-0~he-art classyicanon on roraied-MNIST, and
compennve results on other benchmark cnclienges.

L. Introduction
We fick'e the challenge of representing SHIY-milanons
i comvolanonal senral relworks (CNNS) [T9] 0 Charertly,

coavaluboazl layers are coadraned by desizn 10 map an mage
0 & fecnare vector. and fransialed vesions of the image map
0 proportonally-translated versicns of he same featurs vector
[2 11 Gignoirg edze elfecs—sez Fgure 1. Howvever, ualil now,
il ome rovgres the CNN input then the feature vectors do not
necessarly cotte iv @ oeaningful or casy o predict manner.,
The soughu-zfier property, dinscly relatng irpul tamsfommations
o feature vector ransformatans, is called eqguvan tance.

A spoc.al vase of equivatiance is invaciance, where feature
voolons remai constant weder dl vansfoometions of the nout,
This ¢an bz a desirable propanty glebally for a model, such esa
clesaafier but we skould b: carcfal not o resne all intcmncdiae
levels of prozessing 1o be transfarmation isvarient. For example,

‘attp:,/visual.cs.ucol.2c.uk/oubs/ harmoracNet s,
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Figowe | Pavch-w e manclation eqpravanisnce in CNNg ariies from
translehinaal weight tying. s hat a trandahor 7 of the 1apat 1image L
lzads W voncspusdie g Gaslativn ¢ of U feawse nan f{I) vice
x < Jir geacral, dae © peoliag offacts Hewever, for rotutiors, CNNs
do not vet asve 2 feature sozce transformation @ ‘kacd-baked ivo
their strxcture. and it is cemplicated te discover what o may e, if it
exists a1 gll. Hamronse Networks have a hard-baked -epresevaton,
which alows for cascr mtoiproadon of foatare maps—scc DNgure 3

consider detecting a defDamable obyecl such a< & butierly. The
pese of the wings is Emiled in range, and 50 Diere are only certain
PesSes our detector should nommally see A raasformation invari-
ant dewoor, good a detecing wings, would detea themwhether
they were bigger, furthes epast, rotatsd, et , acd it woulc cicode
all these cases with the sane representaion. It would fail 1o
nctice aorscrs: situations, howcever, such as a buterlly with
wingzs rotated past the usual range, bocause it has threwn that
extra posc infocmation away. An cquivanart detector, on the
other hard, deec not disposs of Jocd sose information, ard so it
hands cn a ncher aad mdee wseful represantation o downsteam
provesses. Equivarince coaveys more informaticn about an
mput to downstream srocesies. 1t alio conitraing the space of
pessible leamed models to those that are valid under the rales of
naturzl iriage feematon [10]. This make: jeaming mose raliabe
andd helpr with generaliztior . For ircionee, consider CNNs
The Key insight is that the saiistes of ranral images, :mbodicd
in the correlations batween pixels. are a) invariant [0 ranslaton.
and b) aighly localized. Thus feanures al every layer .n 2 CNN
are campued on ocal receptive Jelds, where weizhts are shared
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Abstract

We present o convolutonal nctwork that 1s cquivarant to ngid body motions.
The modzl wses scalar-, vector-, aad tznsor fields over 3D Euclicean soace
represent dats and sqnivanant comnlntions to map hetwern aich representations
These SE(3)-cquivanaat convolutions wilize <anch waich arc paramctenized
as a hinear combinaton ol a complete steerable kKerel basis, whick 15 derived
analyticaly in this papar W= srove that equivanant convolations are the most
general cquivariant lincar maps between ficlds over R, Our experimental results
confirm the elfzdaveness ol 3D Steecable CNNs Lor the problemr. ¢f arunce acid
propensity prediction und protein structars classiication, both of which have
inlecrcat SE(3) synurcuy

1 Introduction

[ncreasiagly mackine leaming techniqaes are becng appled m the natural sciences. Many preblems
in this domain, such as the enalysis of protein structure, exkitit exact or approximale symmelrizs
It hzg lemg hesn indersiond thal the eqoaations that define 2 mod=l o0 natral Law shonld mspect
the symmectrics of the system under stady, anc that knowledge of symmeztaacs provides a powerful
constraint on the space of admissible modz1s. Indeed, in theoretical physics. this idea is ensarinzd
as a fundamental principle, known a: Einslein s pancinle of gensral covariance. Machins learaing,
wlidhiis, Lhe physics, converned with the induction of predicive madeb, is no diffacot. ow tacdels
mus’. raspect known symmetries in order to preduce physically meaningfal resclts.

A lot of recent work, reviewed in Sec. 2] has focused or tae problem ol developing equivariant
networks, which respect some known symmetry. In this papar we develop the theocy of SE(3)-
cyuivartant actworks. Tlus s far fom bivial, bocause S5(37 is xodl nos-conunutatve and non-
compact Nevertaeless al mn-tirre, all that -s reguired to make a 3D cenvolution squivaniant Lsing cur
method, 15 o parameterize the convoluticn kerne! & a hnear combiaation of pre compuied steerable
basis kemels. Hence, the 3D Sicereb.e CNN incarporaes ejuivaniance 10 symmery uansfonradons
without deviating far from current 2ngineerirg bes! practices

Tte architectires presented hare (all within the framewark of Steeranle GAONNe [RU110 47 (45])
which represent their input &s ficlds over a homogencous spac: (IR in this casz) and use steemble

* Ecuzl Centritution. MG ingtiated the project, derived the keme. space constraint, wrote the firs: network
implansentstion and ran the Shree 17 expesinent MW salved the Femel conersin: snslytically, ds< gned the
end alinssd kernel sampling i dizorste space and coded / sar many of the CATH experimencs.

Seurce code s available athttps. //zithub com/maxivgsiger ‘aelcun

32ad Corfarcace on Nowra!l Information Processing Systcns (NoardD'S 2018), Moncréal Canada.
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Compatible activation function: any element-wise activation for regular representations or scalar fields Fourier-based (%, 6(% ' f))
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Compatible activation function: tensor product activations (equivariant polynomials)
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Abstract

Recent work by Cohen er al. [ 1] has achieved siaie-of-the-art results for learning
sohencal imeges 1n arolelion 1nvanant wav by using 1deas lrom group represen-
tation taeory aad norcommutatise harmonic analysis. In this paser we propose
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~k that zenerally =xhibits improved perfermace, but
int of view 1s actually simpler. An unusual feature
15 that 1t uses the Clebsch Geordan tronsform as 11s
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» the action of other compact zroups.
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g tha: tie nawral way w generelize convolutiona. newworks
ugh geaeralizirg the notior: of equivariance 1self to cther
Leting f* denote the sclivations of the ncuross in layer »
ion-like nearal network, matiematically, ejuivaniance (¢ @
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fixzd st of Lincar transforrtions {7} e . siNote thatin
", the difference between the twd words being oaly one of
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iwork's iuvariane propcitics.
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P RuUz QU & ... DY = (¢ @y2) B3) ®... @ .

In an actual computation of such higher order products, however, a considerable amount of thought
might have to go into optimizing the order of operations and reusing potential intermediate results
to minimize computational cost.
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Abstract

Recent work by Cohen eral. [ 1] has achieved siaie-of-the-artresults for learning
sohencal images i arotelion 1nvanant wav by using 1deas lrom zroup represen-
tation taeory aad norcommutative harmonic analysis. In this paser we propose
[ -k that generally exhibits improved performace, but

int of view 1s actually simpler. An unusual featre
15 that 1t uses the Clebsch Gerdan tronsform as 11s
h‘us avoiding repeated forward and backward Fourier
eas of the paper generalize th constmicting nenral
the action of other compact zroups.

in deed leaning, we stlldo not have a satis‘actory undesstand-
ble to achieve such specteculer aerfomance or a wide range of
slear, however, 1s tha: certaen architectures pick up or ratural
somponent Lo their success. The classic example is of counse
) ‘orimag= classificstion [7] Reeall that, fundamertally, each
ations: a lincar one corsisting of convolving the previous
mall) lcamable flter, and a nondinear bat poiatwise one, such
is sufficien! t» guarartes translation equivariance, meaning
suene veolor &, then e activation paltan in cachi lughe: layer
me arount. Equivanance 1s crucial lo mmage recognition lor
ante=es that exactly the some fillers are applied te each parnt
(b) Assurning thal finally, ai tie very (op of the uctwork, we
riant, the entire retwork will be invanant. ensuring that it can
seardless of its location,

peared that axariae equivarionce from tha theoretical pomt
ng tha: tie nawral way w generelize convolutiona. networks
rough geaeralizirg the notior of equivariance 11self to cther
Leting f* denote the sctivations of the ncuroas in layer &
ption-like nearal network, matiematically, ejuivariance (¢ a
thes natwark are temsformed hy some transfornation g € (7
fixzd st of Lincar transforrtions {7} e . siNote thatin
ce”, the difference between the two words being oaly one of

multiple channel:, and correspondingly multiple filters per layes, but
work's iuvariane propcitics.

32nd Conference on Newral Informotion Processing Sysiems (NearlPS 208, Montréal Canada

Compatible activation function: tensor product activations (equivariant polynomials)
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Abstract

Invariance urder symmetry is an important problem in machine leaming. Our
paper looks syecifically at equivariant neural networks where transformations of
inpite yield hamomorphic Fancformations of outpite Here steerahle TNNc have
emerged as the standard solution. An inhesent problem of steerable representations
is that genera nonlinear lavers break equivariance, thus restricting aschitectural
choices. Our >aper applies karmonic distartion analysis to illuminate tye effect of
nonlinearities on Fourier representations of SO(2). We develop a novel FFT-based
algorithm for computing representations of non-linearly transformed activations
while maintaining band-limitation. It yiclds exact equivariance for polynomial
(approximations of) nonlincarities, as well as approximate solutions with tunable
accuracy for general functons. We apply the approach to build a fully E(3)-
equivariant network for sampled 3D surface data. In experiments with 2D and 3D
data, we obtain results that compare favarably to the state-of-the-art in terms of
accuracy while permitting continuous symmetry and exact equivariance.

1 Introduction

Modeling of symmetry in data, i.c., the invariance of properties under classes of transformations, is
a cornerstone of machine learning: Invariance of statistical properties over samples is the besis of
any form of generalization, and the prior knowledge of additione] symmetries can be leveraged for
performance gains. Aside from data efficiency prospects, some applications reqiire exact symmetry.
For example, in computational physics, symmetry of potentials and force fieldsis directly linced to
conservition laws, and is therefore important for the stability of simulations.

In deep neural networks, (discrete) ranslational symmetry over space and/or time is exploted in
many architectures and is the defining feature of convolutional neural networks (CNNs) and their
successars. In most applications, we are typically interested in invariance (e.g., classification remains
inchangrd) or co-varisnee (¢ g | predicted geometry ic transformad along with the input) Famally,
this goal is captured under the more zencral umbrella of equivariance [6]:

Let f : X — Y be a function (e.g.. a network layer) that maps between vecter spaces X, Y (e.g.,
feature maps in a CNN). Let & be 2 group and let (in slight abuse of notaticn) g © v denote the
application of the acticn of group clement g on a vector v. f is called equivarian, iff:

Vg€ G: f(gov)= h(g)o f(v), (1)

where h: G~ G' s a group homomorphism mapping into a suiteble group . [nformally speaking,
the effect of a transformation on the input should Fave an effect on the output that has (at least) the
same algebraic structure. Invariance (k = 1¢v) and covanance (k = id; o) are special cases, along
with cortra-vanance and any other isomorphisms cf subgroups of (5.
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Activation functions

Activation functions should commute with the representation of the fibers

o (/™) =p@o(fx)

Compatible activation function: norm-based activation functions

PR o(IfINfx) = f(x) o(lpROOIDpRY[x) = pRYs(If)Nfx) = f(x)

Compatible activation function: gated non-linearities

p(R) o([,())f(x) = f(x) o(po(R ) ())pR)f(X) p(R) ([, (x) = [fi(x)

A

Compatible activation function: any element-wise activation for regular representations or scalar fields Fourier-based (%, 6(% ' f))

Zoo(fx,0) = o(fx,a=-0) = [fxa-0) o(ZLof(x,) = o(fx,a-0) = [f(Xx,a-0)

Compatible activation function: tensor product activations (equivariant polynomials)



